VituixCAD マニュアル ~とりあえず動くからヨシ!~

ざっくりの流れ

カタログのグラフから、ユニット特性データを作る。【P.2~】
 所要時間:初めて2時間、慣れてる0.5h
 エンクロージャーを決める。バスレフ+ユニットの総合特性を出力する。【P.8~】

所要時間:初めて2時間、慣れてる0.5h

- <u>3. バッフルステップ補正のデータを作り、組み合わせる。</u>【P.14~】 所要時間:初めて2時間、慣れてる0.5h
- <u>4. ネットワークを作る。</u>【P.23~】 所要時間:初めて1時間~、慣れてる0.5h~

今回は、Fostex の FE103NV と PT20K を使った 2way の小型バスレフ型スピーカーをシ ミュレーションで作製してみたいと思います。

本方法は、メーカーで TS パラメーターが提示されている場合のみ有効です。 ジャンクのユニットなど、全く素性の分からない場合は、自身で TS パラメーターを測定す るひつようが出てきます。

以前に発売された Fostex ユニット (FF105WK、FW108HS 等の現行品) は、下記の Fostex インターナショナル web サイトから、詳細な TS パラメーターを探すことができます。 https://www.fostexinternational.com/docs/speaker_components/speaker_line_up.shtml

また、本マニュアル作成では、だし氏の下記資料を大いに活用させて頂きました。ありが とうございます。

https://docs.google.com/document/d/e/2PACX-1vQkFmzwCmisKmjT5APJ7PoLkZEViowA7KEphKeW5giXpht3NDzOP8a8PqYxPxEdmgXUZAY12qtBgyrp/pub

1. カタログのグラフから、ユニット特性データを作る。

ソフトを立ち上げます。

💎 VituixCAD				
File View	Тоо	ls Options	Help	
Drivers Cros	s 🚺	Enclosure	F3	1
Description	1	Merger	F4	E
	88	Calculator	F5	L
Drivers	~	Diffraction	F6	
Model	98	SPL Trace	F7	z
Driver #1	88	Auxiliary	F8	
	Ļ,	Convert IR to F	R F9	
	VituixCAD File View Drivers Cros Description Drivers Model Driver #1	♥ VituixCAD File View Too Drivers Cross Description 1 Drivers ✓ Model € Driver #1 1	♥ VituixCAD File View Drivers Cross ● Enclosure ● Merger ● Calculator ● Diffraction Model ● ● SPL Trace ● Driver #1 ● Auxiliary ○ Convert IR to Fe	♥ VituixCAD File View Tools Options Help Drivers Cross € Enclosure F3 Description ● Merger F4 Image: Calculator F5 Drivers ✓ Diffraction F6 Model ● SPL Trace F7 Driver #1 Image: Auxiliary F8 E9

左上の Tools から SPL Trace を押します。

-		00				AE
Y SPL Trace					-	
File Edit	Options					
High amplitude						High impedance 64 Ohm
Grids						Z Axis type O Linear () Logarithm
Trace SPL						Trace Z Re 4 Ohm
Low amplitude						Low impedance
	10 Hz	0 Hz	0 dB	0 Ohm	20000	Hz

こんな画面が立ち上がります。

お目当てのユニットのメーカーweb サイトで、特性グラフを入手してきます。

FE103NVのwebページは、特性グラフが独立画像として掲載されています。 そのため、画像の上で 右クリック→コピー を押して、グラフを PC に記憶させます。

https://www.fostex.jp/products/fe103nv/ より

そのまま、VituixCADの画面(SPL Trace)に戻り、Ctrl+Vを押すと、画像が読み込まれます。

ちょっと上手くいかない場合は、グラフ画像を png や jpg ファイルとして一度保存し、それを File→Open image で呼び出すと良いでしょう。

Fostex の P1000K のように、PDF ファイルでしか特性が見られない場合は、①上手く PDF からコピーで切り出す ②PrintScreen 機能で画像ファイル (png、jpg 等) を作ってから、 上記の方法で取り込む 等ができると思います。

グラフを取り込んだら、VituixCAD にグラフを認識させるためのガイド(色線)を適当な 位置に動かします。ドラッグで動くので、適当に合わせます。

ツイーターの場合、中音~高音のグラフになっているので、緑枠内を適当な値(例えば 2000Hz など)に変えて対応します。

できました!

このグラフでは、インピーダンスは log 軸となっているので、「Logarithm」が選択されて いることを確認しましょう。ここは忘れずに確認です! (赤枠)

- ★「Linear」10、20、30、、、Ωが等間隔になる縦軸
- ★「Logarithm」4、8、16、32、、Ωが等間隔になる縦軸

左側の「×Grids」(赤枠)を押し、その後グラフ内をクリックすると、 グラフ内の補助線が消えます。

次に「Trace SPL」(青枠)を押し、周波数特性のグラフ(線)をクリックします。

押したところに沿って赤線が出現し、グラフがトレースできます。一回では上手く読み込 まれないので、赤線が出ていない場所をポチポチ押して認識させます。

今回は、グラフにはない 20kHz 以上が認識されてしまいました。グラフと混同されやすい 所にある文字が周波数特性として認識されてしまったようです。これを防ぐために、<u>事前</u> に「ペイント」等のソフトで余計な情報を消しておくと良いかもしれません。特に、点線 で描かれる軸外特性の読み込みは、事前の画像編集が重要になるでしょう。

上手く認識できたら、左下の「Exprot」を押して周波数特性のデータを出力します。適当 な場所にファイルを保存しておきます。ユニット名を名前に追記しておくと、分かりやす いと思います。

インピーダンス特性は、右側の「Trace Z」と「Exprot」で同様に行います。

ここでは、「ペイント」ソフトを使って、<u>余計な線を消した</u>&<u>薄い線を実線で手書きした</u>グ ラフを使いました。

インピーダンス特性は、特に高域の軸外特性と重なって描かれているため、事前の画像処 理がないと、こうして荒ぶってしまいます。

おつかれさまでした。

ひとまず、FE103NVの周波数特性とインピーダンスの、二つの txt ファイルが出来上がり ました!

ソフトウェアは、一度立ち下げても構いません。 ここで一休憩するのもアリですね。

同様の手順で、<u>軸外特性(30°)</u>も同様に出力しておきます。 また、<u>ツイーター</u>として使う PT20K のデータも作成しておきます。

周波数特性は、軸上(0°)と軸外(30°)の双方を見比べながら作り込んでいくのが大切 だと考えています。そのため、可能な限り<u>軸外特性もデータとして作成しておく</u>ことが望 ましいでしょう。

いま、私の手元には、以下の6つのtxtファイルが揃っています。

- ・FE103NVの周波数特性(軸上0°)
- ・FE103NV の周波数特性(軸外 30°)
- ・FE103NV のインピーダンス特性
- ・PT20Kの周波数特性(軸上0°)
- ・PT20Kの周波数特性(軸外 30°)
- ・PT20Kのインピーダンス特性

2. エンクロージャーを決める。バスレフ+ユニットの総合特性を出力する。

次は、エンクロージャーの設計です。

今回は、バスレフ型のエンクロージャーを作っていきます。

v	Tools	Options	Help
ss	8	Enclosure	F3
Г	1	Merger	F4
L	88	Calculator	F5
	~	Diffraction	F6
	88	SPL Trace	F7 Z
		Auxiliary	F8
	1	Convert IR to F	R F9

まずは、VituixCADの初期画面から、Tools→Enclosureを選びます。

4	Encl	osure																	_	-	C	x נ
ł	it Filt	ter 🗌 Enable filterin	ne □ PR 1671/167	1 visible						Q	🗌 Or	line da	tabase 📝	•	P Drivers	😚 P	roject 🛡	🂾 Proje	ect 🍺 S	SPL 🗼 Im	pedance	Feed
Г	Sel	Manufacturer	Model		Туре	Status	Size	Re [ohm]	fs.,	Qms	Qes	Qts	Rms	Mms	Çms	Vas	Sd [cm2]	BL ,	Pmax [W]	Xmax	Beta	Z1k [oh ^
Γ		AE Speakers	Dipole 15	-	S		15	12.3	21.7	15.2	1	0.94	0.81	90	0.7	623	855	12.2	200	12		
Γ		AE Speakers	TD15H	1	S		15	6.5	21	4.23	0.27	0.26	4	129	0.45	467	855	20.1	500	14		
-		AE Speakers	TD15M				15	6.6	34.7	5.09	0.35	0.33	3	70	0.3	312	855	17	500	6		
-		AE Speakers	TD15S	1	S		15	5.3	22.8	3.87	0.41	0.37	4	108	0.45	467	855	14.1	500	14		
		AE Speakers	TD15X		S		15	5.6	23.2	3.82	0.31	0.28	4	105	0.45	467	855	16.7	500	14		~
<	_																					>
6)river (configuration	obaric (110		SPL			180	10			Power				20		Excur	sion		50
	1 driv	er v se	ries O Parallel	dB					deg	Ŵ							mm					Ň
1	Extra i Source	mass_0.0 ∉ 2.83 V 0.0	O 2 2 Ohm O 3 3	100		A			90	0.8							15					37.5
	AE Sp	eakers Dipole15	Vd [cm3] 1026	95 90		V	_		45	0.6			γ				10					25

画面がいろいろ出てきますが、まず、目的のウーハー(フルレンジ)ユニットが一覧にあ <u>るか</u>探してみます。

今回は「Fostex FE103NV」を使うのですが、残念ながら画面上部のユニット一覧にはあり ませんでした。(2020年4月現在)

I	💎 Encl	osure														-							-		ı ×
1	ttt Fil	er 🗌 Enable filter	ing 🗌 PR 1671/1671	visible						Q	🗌 On	line dat	abase	1	0	P	ivers	🔁 Pi	roject 🛡	🂾 Proje	ct 🍺	SPL	🖕 Imp	edance	Feed
I	Se	Manufacturer	Model		Туре	Status	Size	Re [ohm]	fs.	Qms	Qes	Qts	Rms	!	Mms	Çms		Vas	Sd [cm2]	BL ,	Pmax [W]	Xmax		Beta	Z1k [oh ^
1		AE Speakers	Dipole 15		S		15	12.3	21.7	15.2	1	0.94					0.7	623	855	12.2	200		12		
1		AE Speakers	TD15H		S		15	6.5	21	4.23	0.27	0.26		4	129		0.45	467	855	20.1	500		14		
1		AE Speakers	TD15M				15	6.6	34.7	5.09	0.35	0.33		3	70		0.3	312	855	17	500	1	6		
I		AE Speakers	TD15S		S		15	5.3	22.8	3.87	0.41	0.37		4	108		0.45	467	855	14.1	500		14		
I		AE Speakers	TD15X		S		15	5.6	23.2	3.82	0.31	0.28		4	105		0.45	467	855	16.7	500		14		~
1	<									_	_	_											_		>
	Driver 1 driv	er v s	isobaric	110 dB 105		SPL			180 1 leg 135	Ŵ			Pow	ver					20 mm		Excu	rsion			50 N
	Source	2.83 V 0.0	0 2 2 Ohm 0 3 3	100		A			90 ⁽⁾	0.8						_			15						37.5
1	D. J.	earlers DipoleTo	Vo gemeg 1020	90		1	-		0				V			1			10						25

そこで、ユニットの追加(赤枠をクリック)を行います。

なお、今の作業は、TSパラメーターに基づくバスレフ箱の設計なので、<u>高音を担当するツ</u> <u>イーター</u>は関係ありません。また、**先ほどグラフを読み込んだファイルも関係ありません。** Fostex の web ページにある TS パラメーターを見ながら、表を埋めていきます。 ここでは、FE103NV のデータを入力します。

lanufacturer	Fostex						
Model	FE103N	IV				Electrical Parameters	
Туре		~					
Status		~	-			Nominal Impedance	8.0 ohm
Size	4	inches	Basi	ic Z mod	el	D-	77.1
Re	7.7	Ohm	Z1k	8.6	Ohm	ке	7.7 onm
fs	91.8	Hz	Z10k	17.89	Ohm	Le	0.2 mH
Qms	5.2		Exte	nded Z r	nodel		
Qes	0.5		Le	0.200	mH	fs (F0)	91.8 Hz
Ote	0.46		leb	0	mH 🚺		
Rms	0.278	Ns/m, ke	r/s Ke	0	sH	Mechanical Parameters	•
Mms	2.5	e	Rss	0	Ohm	Mms (M0)	2.5 g
Cms	1.2	mm/N		Cros	scalc		
Vas	4.3	liters	n0	0.645	× 1	Cms	1.2 mm/N
Sd	50.24	cm^2	SPL	90.2	dB/W		
BL	4./	N/A, Im	USPL	90.4	dB/2.83V	BI	4.7 N/A
Pmax	5	W	EBP	183.6		Loss Factors	
Xmax	15	mm	Vd	75.4	_ cm 3	2000 . 401010	
Creep β	0					Qms	5.20
Revision							
Undated						Oes	0.50

(画像右側) https://www.fostex.jp/products/fe103nv/ より

ここで、注意ポイントが3点あります。

■ (赤枠) Rms について

Rms=1/Qms*√Mms/Cms です。 エクセルでは、下記のように計算できます。

しりッ	プボ 回	フォント	G	配置	
S	им ▼(• × ✓ f±	=1/B3*(E	34/B5)^0.5	
	A	В	С	D	
1					
2					
3	Qms	5.2			
4	Mms	2.5			
5	Cms	1.2			
6	Rms	=1/ <mark>B3</mark> *(B4	1/B5)^0.5		
7					

■Sd について■

Sd は振動板断面積です。FE103NVのWebページには「Equivalent Diaphragm Radius (a)」 と振動板の有効半径(mm)が書かれていますので、そこから円の面積(cm2)を求めます。

■ (青枠) Basic Z model について■

もしかしたら、記入不要かもしれません。

全ての記入が終わったら、OKを押します。後で書き直すこともできるので、もし間違ってしまっても大丈夫です。

TS パラメーターの入力が終わり、先ほどの画面に戻ってきました。 入力した「FE103NV」が一覧表に追加されたと思います。

今回は、バスレフ箱なので、「Bass reflex」を選びます。

タブ「Enclosure」をクリックすると、「箱の容量」や「ダクト長さ・直径」の調整ができ る画面が出てきます。

Fostex FE103NV Vd [cm3] 75	80
Badiator type Bass reflex	75
Align Enclosure Jata	70
Box Rear 1	65
Volume [I] 4.00	60
02 100	55
QI 15	TUP
Fb [Hz] 64.8	40 ohm
Length [cm] 4.0	30
Diam [cm]2.0	
	20
Number 1	
End corr 0.80 V	10
	0

ひとまず、容量は4L、ダクトの長さは4cm、ダクトの直径は2cm、としてみます。

緑枠のところに「Area [cm2]」と出てきている場合は、ダクトの断面積を入力する状態で す。チェックボックスを外せば、内径(直径)入力モードになります。適宜使い分けると 良いでしょう。

あとは、自分の経験と勘で数値をいじります。

左上の「SPL」と書かれたグラフに、周波数特性が出てきますので、それを見ながら調整 します。

今回は、<u>容量は7L、ダクトの長さは2cm、ダクトの直径は2cm、共振周波数は約61Hzと</u> しました。 これは、FE103NV を試聴したときの感触や、歴代 FE103 を使ってきた経験からの値です。 実は、もっと賢く、全て自動で計算してくれる方法があります。

Driver configuration	Isobaric Series series Parallel 2 2 0.0 Ohm 3 3 Vd [cm3]
Radiator type Bass ref	lex 🗸 🗢
Align Enclosure Info	X
 0.5 0.577 0.707 	Table
0.8 0.9 0.62 Max comp 2.0 %	QI ③ 3 ④ 7 ④ 15
Include Qb+Rs	🗹 Auto align

Align タブで、適当な設定値を選び、Auto align のチェックマークを入れると、自動で箱容 量、ダクトの長さが計算されます。

※自動計算すると、手動で入れた値(容量、ダクト長)は上書きされます。

ここで、Tableの中の3つの選択肢の意味を説明すると...

「SBB4~」 ユニット(裸)の共振周波数と、ダクトの共振周波数が同じ。比較的大きなエンクロージュア容量に計算され、過渡特性が良いと言われる。

「QB3~」 比較的小容量の箱で、ダクト共振周波数を低くとる計算方法。

「SC4~」 「SBB4~」に近いが、Qts が小さいときに異なった結果が出てくる。

上記の詳細は、書籍「自作スピーカーエンクロージャー設計法 マスターブック」の p.90 (初版)をご参照ください。 比較的良さそうな感じになってきたら、右上の「SPL」「Impedance」をそれぞれクリック。 シミュレーションした周波数特性とインピーダンス特性を出力して保存します。

せっかく箱特性を計算したので「Project(フロッピーディスクのマーク)」を押して、生データを保存しておいても良いでしょう。

おつかれさまでした!

ユニットの TS パラメーターと、ダクト設計から求めた<u>周波数特性</u>&<u>インピーダンス特性</u>の 二つの txt ファイルが入手できました。

3. バッフルステップ補正のデータを作り、組み合わせる。

さて、ここからは少しアナログです。

先ほど、箱容量を 7.0L としましたが、「どのようなエンクロージャーデザインにするか」 を考える必要があります。

箱のデザイン(寸法)は、音の回折効果を引き起こすため、スピーカー周波数特性に変化 をもたらします。これを「バッフルステップ特性(Diffraction)」と呼びます。

このステップでは、この「バッフルステップ特性」をシミュレーションします。 そのため、先に寸法を決定しおく必要があるのです。

とりあえず、容量 7.0L に、板厚を加えて、、、

高さ 30cm、幅 14cm、奥行き 25cm というデザインにしようと思います。

寸法が決まったら、シミュレーション開始です!

Tools→Diffraction \mathcal{E} クリック。

-35 20Hz	50	100)	200		500		11
20 Hz								
View	В	affle			Drivers			
232 167	mm V	√idth	150	mm	● Cin	cular 🔾	Rect.	
그 및 보	H H	leight	300	mm	Dd	80	mm	
🗌 Crosshair	C	orners	4		or Sd	50.27	cm2	
🗹 Snap 🛛 5	mm E	dge rad.	0	mm	Count	1		
			leal edg	e	Sten	200	mm	
		0	pen baf	fle	0.00	200		
6	22	New	<u>6</u> 0	pen	🂾 Sav	e 🔒	Export	

以下の数値を記入します。

Snap : 5mm

Width: 140mm (バッフル幅) ※画像では誤って 150mm となっています。
Height: 300mm (バッフル高)
Edge rad.: 0mm (バッフル端をラウンド加工する場合は、ここの値を適宜調整。)
Sd: 50.24 (TS パラメーターの所で入れた、ユニットの振動板面積。概算値で OK。)
Count: 1 (ユニットは1つ。)

入力が終わったら「New」をクリック。

左側に図面が出てきます。

円形マークをドラッグで動かして、ユニットの位置を決めます。ここでは「FE103EN」の 位置とします。

ユニットの位置を変えると、右側のグラフの特性がリアルタイムで動いていくのが面白い ですね。なお箱の形も、図面を動かして調整できます。

マイクの形をしたマークは、推奨のリスニング高さに配置します。ウーハーとツイーター の間、ツイーターの軸上など、適当に決めます。

ユニット位置に応じて特性が如実に変わってきますが、迷っていても仕方ありません。 そもそも今回の実践例は、カタログスペックスペックを参照しているので、余り精度は期 待できないのです。

決まったら「Exprot」を押して保存します。.txt ファイルが生成されます。ファイル名は 「dif_WO」とかが良いでしょう。 (注意) SAVE では txt は出力されません。

<u>ツイーターの特性も忘れずにシミュレーションします。</u> こちらのファイル名は「dif_TW」としました。

おつかれさまです! これで、バッフルステップ特性のtxtファイルが手に入りました!

※なお、【軸外】のバッフルステップ特性もシミュレーションできますが、カタログ値の周 波数特性(軸外)と重複する要素がどこまであるか不明なので、あえて実施しませんでし た。興味のある方は、ぜひ突き詰めてみてください。 こうして得られたバッフルステップ特性データを、先にカタログから認識させた周波数特性と合成します。 **※TS** パラメータから求めた箱特性は、合成させる必要がありません。

Tools→Calculator \mathcal{E} クリック。

A responses に「FE103NV の周波数特性(カタログより読み込み、軸上 0°)」の特性、 B responses に「バッフルステップ特性」の特性を入力。

気を付けるポイントは、赤枠の3点。

• B responses の Scale dB に「-6.0」と入力する。

・Multiple output は、「Multiply A*B」とする。

<u>・出力先フォルダーを決める。(とりあえずデスクトップでもOK)</u>

完了したら、<u>右下の「Calculate&Save」を押す。</u> A responses に使ったファイルの末尾に「~mul」と名前が追記されたファイルが生成する。 同様にして、以下の7つの周波数特性、3つのインピーダンス特性が得られたと思います。

<周波数特性>

①FE103NV(0°)のカタログ値+バッフルステップ込み
 ②FE103NV(30°)のカタログ値+バッフルステップ込み
 ③FE103NVのTS パラメーターから求めた箱特性

④PT20K(0°)のカタログ値+バッフルステップ込み ⑤PT20K(30°)のカタログ値+バッフルステップ込み

⑥バッフルステップ特性(ウーハー、FE103NV 用) ⑦バッフルステップ特性(ツイーター、PT20K 用)

<インピーダンス特性>

- ・FE103NV のカタログ値
- ・FE103NVのTS パラメーターと箱特性
- ・PT20Kのカタログ値

ここで、ウーハー(FE103NV)側の特性は、ユニットの特性(上記①や②)と箱の特性(上 記③)を組み合わせる必要があります。

ユニットの特性は、カタログスペックから読み込んだものなので、バスレフ箱の効果が含 まれません。 逆に、箱の特性は、ユニットの中高域特性が考慮されていません。 そこ で、適当な周波数で両者を合体させて、仮想のスピーカーとして完成させるのです。

Tool→Merger をクリック

上から、「ユニットのカタログ特性」「バッフルステップ特性」「箱特性」のファイルをそれ ぞれ開きます。この処理は、ウーハー(FE103NV)のみ行います。

最初は、二つのグラフにズレがありますので、200~500Hz のスロープが重なるように動か します。動かすのは「ピンクの縦軸」と「Scale」の二つです。 ピンクの縦軸は 300Hz 付近に、Scale は±2dB 以内に収まるはずです。 ※追記 3つのファイルの読み込みで、戸惑うことがあるので詳細を書きます。

まずは、Low frequency part のところに、箱の特性(上記③)を入れます。 こんな感じの、素直な特性が出てきます。

次に、Diffration response のところの「○」にチェックを入れ、 バッフルステップ特性の txt ファイル(上記⑥)を入れます。

バッフルステップ特性が加算され、うねっとした感じのグラフになります。

最後に、カタログから読み込み、バッフルステップ特性を加えたデータ(上記①、末尾 mul と書かれたファイル名)を入れます。 <u>誤って、カタログスペック素のままの特性を入れ</u> <u>ないように注意しましょう。</u>

そして、間違いなく入力しても、エラーがでます。

どうやら、「軸上特性が見つからねぇぞ!」とお怒りのご様子。 とりあえず OK を押して、その後の画面で「Axial」に☑を入れます。 (もっとスマートな方法があるのかもしれません。)

これで、ファイルの読み込みが完了です。

~追記終わり~

イイ感じに合成できたら、Save を押してファイルを出力します。 この時、下記の Destination directory のフォルダーに、一瞬でアウトプットされますので、 ファイルを見失わないよう気を付けましょう。

同様に行い、⑧と⑨を作成します。ファイル名は「~mrg」となっているはずです。

<周波数特性>

⑧FE103NV(0°)のカタログ値+バッフルステップ込み+箱特性合成済
 ⑨FE103NV(30°)のカタログ値+バッフルステップ込み+箱特性合成済

いよいよ役者は揃いました! ネットワークのシミュレーションを始めましょう!!

<u>4. ネットワークを作る。</u>

初期画面のところで、今まで作ってきた特性(周波数&インピーダンス)を入力します。 まずは、FE103NV からやってみましょう。

周波数特性(上記⑧)、インピーダンス特性(箱特性)をそれぞれ開きます。

右側のグラフは何も変化しませんが、気にせず、Driversのところに名前を入力します。

FE103NVの軸上特性なので、名前は「FE103NV_00deg」にしましょう。 入力後、何か 聞かれますが、気にせずOKを押します。(大丈夫か?) 同様に、ツイーターも入力しましょう。

As a holder with the state of the state	Dimentificanti destate de a	DRE-307 MBUSELOO W.J. 10	C IA BUILD		_
VituixCAD					
File View Tools Options	Help Re	eference angle 0	deg hor 🖨 🛣	95	
rivers Crossover Room				dB 90	
Description				85	
				80	
Drivers				75	
Model	SPL Z	Micropho	ne offset	70	
FET03NV_00deg	80	Planes	0 deg	65	
Frequency responses 👩 🗶		Add	new driver?		100 20
C:¥Users¥kanon¥Documents¥Vituix(AD¥Projects		121.100	いいえ(N)	-
Filename					
FE103NV Clipboard_image_SPL mul m	rg.bd		103 0	80	
				75	
				70	

緑の「+」マークを押します。

ツイーターは、バッフルステップ特性込みのファイル(上記④)を読み込みます。

	Help		Reference	e angle 0	deg hor	÷ I	95 dB	-
rivers Crossover Room							90	
Description							85	
Drivers						-	80	
Model	SPL	Z	1				75	
FE103NV_00deg	80	8	0	Micropi	one offs	et	70	
Driver #2	80	8		Planes	0	deg	65	
			×	×	0	mm	60	
				Y	0	mm	55 20Hz 50 10	00 20
Frequency responses [] 🗙							95	10.00
C.¥Users¥kanon¥D <mark>sktop¥愿波物</mark> 特	if (回折対	か果:追加)					dB 90	
Filename					Hor	Ver	85	
PT20K SPL multet					20	0	80	
							75	
							70	
							65	
							60	
								_
							55 20Hz 50 10	00 20
							55 20Hz 50 10 95	00 20
							55 20Hz 50 10 95	00 20
							55 20Hz 50 10 95 90 95	00 20
							55 20Hz 50 11 95 90 85 90	00 20
Scaling (0.0 dB Delay (0	us	_ Inve	ert.		1 res	oonses	55 20Hz 50 11 95 90 85 80 75	00 20
Scaine 0.0 dB Delay 0 Smoothine None	us	_ Inve	rt		1 res	ponses	55 20Hz 50 11 95 90 85 80 75	00 20
Scaling [0.0] dB Delay [0 Smoothing None	us	_ inve	ert.		1 res	conses	250Hz 50 11 95 90 85 80 75 70	00 20
Scaling 0.0 dB Delay 0 Smoothing None The State of the St	us mm	_ inve	et.		1 resp	conses	50 Hz 50 10 95 90 85 80 75 70 65	00 20
Scaline (0.0) dB Delay (0 Smoothine None (1.1) Expediance response (1.1) (1.1) CetUpersitikanowic datapet (1.2) (1.1)	us mm 1	T20K imp	ert "ZR.txt		1 resp	conses	50 Hz 50 10 95 90 85 80 75 70 65 60	00 20

同様に、軸外特性も追加していきます。

その際は、ここに軸外特性であることを記入します。 ←良く分かりませんでした...

File View Tools Option	ns Help		Reference	e angle 0	dee hor 🖨	X or
rivers Crossover Room						dB
Description						85
						80
Model	SPI	7	1			75
EE 102NV/ 00dee	80	2	0	Microph	one offset	70
PT20K 00deg	80	8		Planes	30 deg	65
PT20K 30deet	80	8	×	×	0 mm	60
				Y	0 mm	55
						LOTIL
Frequency responses [×					95
C¥Users¥kanon¥Desktop¥周沪	数特性(回折刘	课道加〉				90
Filename				ł	for Ver	85
PT20K(30deg) Clipboard_image_	SPL mul txt				30	0 80
PT20K(30deg) Clipboard_image_	_SPL multxt				30	0 80 75
PT20K(30deg) Olpboard_image_	_SPL multot				30	0 80 75 70
PT20K(30deg) Clipboard_image_	_SPL mulitxt				30	0 80 75 70 65
PT20K(30deg) Clipboard_image_	_SPL multot				30	0 80 75 70 65 60
PT20K(30deg) Olpboard_image_	_SPL multot				30	0 80 75 70 65 60
PT20K(30deg) Olpboard_image_	_SPL mulitxt				30	0 80 75 70 65 60 55 80
PT20K(30deg) Clipboard_image_	_SPL mul tot				.30	0 80 75 70 65 60 520Hz 95
PT20K(305eg) Opboard_mage_	SPL multat				30	0 80 75 70 65 60 55 20Hz 90
PT20K(305eg) Opboard_inage_	SPL multat				30	0 80 75 70 65 60 520Hz 95 90 90 85
PT20K(30kg) Optioned_Image_	SPL mul tat				30	0 80 75 70 65 60 20Hz 95 90 85 90
PT20K(30eg) Optioned Jinage,	SPL multet	- Invi	ort		30 1 1 response	0 80 75 70 65 60 55 40 90 85 90 85 80 80
PT20K(30kg) Optional J mage	SPL multet	_ Inve	ort		30 1 I response	0 80 75 70 65 60 520Hz 95 80 85 80 80 85 80 95
PT20K00drg)Optoard_mage_ Scaline 0.0dBDelay Smoothine None ~	y 0 us Z= 0 mm	_ hw	ert		30 1 1 response	0 80 75 70 65 60 520Hz 85 80 85 80 16 75 70
PT20KCD5reg/Cloberd_mage_ Scaline 0.0dBDelay Smoothine None v	y 0 us Z= 0 mm	_ Inve	ort		30 1 1 response	0 80 75 70 65 60 90 85 90 85 80 16 75 70 65
PT20K00keg/Opticed_Integr_ Scaline 00 dB Delay Snoothine None v Impedance response IIII	y 0 us Z= 0 mm ∠-522Mtt¥	T20K imp	ert		30 1 1 response	0 80 75 70 65 60 95 95 96 88 80 80 75 70 66 60

同様に、「FE103NV (軸上)」「FE103NV (軸外 30°)」「PT20K (軸上)」「PT20K (軸外 30°)」の特性を入れます。

入れ終わったら、ファイル名を改めて参照して、ウーハー (FE103NV) には「~mul mrg」 という[×] y7ルステy7 & box 特性が合成済のもの、ツイーター (PT20K) には「~mul」という [×] y7ルステy7 のみ合成済のものが、それぞれ入っていることを確認します。

					_	
File View Tools Options H	elp		Reference a	angle 0	deg h	or 🖨
Drivers Crossover Room						
Description						
Drivers						
Model	SPL	Z		M:		
FE103NV_00deg	80	8	•	IMICro	phone off	set
PT20K_00deg	80	8		Plane	s 30	deg
PT20K_30deg	80	8	~)	X O	mm
FE103NV_30deg	80	8		, in the second s	Y _ 0	mm
Frequency responses 🔯 🗙 C:¥Users¥kanon¥Documents¥VituixC/	AD¥Proje	ects			Hor	Ver
FE103NV Clipboard image	txt				103	_0
renow cipboard_inage_ renouning	.tAl				103	0

いよいよシミュレーションスタートです。 Crossover タブをクリックします。

まずは、回路図中のユニットと電源(アンプ)マークを、一本の線でつなぎます。 入力したユニットをそれぞれ選択し、違和感のない特性か確認します。

「入力したのに、下の Driver プルダウンに名前が出てこないぞ」という場合は、一度 Drivers タブに戻り、緑の「+」ボタンで適当なユニットを一つ追加します。おそらく、更新され るはずです。 では、ネットワークを組んでいきましょう。

先ほどの配線等、部品を消したい場合は、右クリックで Delete を選べば消せます。

-つずつ部品を配置しても良いですが、パパッと入力する手段もあります。

「LIB(ライブラリ?)」ボタンを押すと、代表的なネットワークが表示されます。 ここでは、<u>ウーハーのネットワークを作りたいので、右列から「Passive」「Low」の二つを</u> <u>選びます。</u>ツイーターの場合は「Passive」「High」を選びます。

図表で出てくるのは電気回路としての書き方なので、「マイナスの配線」が描かれていません。私のような電気系未経験の、生粋の自作派にはちょっと慣れるまで時間がかかるかもしれません。マイナスはグラウンドで全部繋がっているという考えなのです。

様々なネットワークがありますが、使いやすい「二次のネットワーク」を選んでみました。

こんな感じに特性がでてきます。

もし変な特性になったら、下の Driver から目的のユニットが選ばれているか再確認してみ てください。

ツイーターも同様に行います。ユニットのマークをクリックして、適宜配置します。

注意点は、グラウンドを取り付けないと、ユニットから音が出ないところです。

さて、形として回路は組めましたが、まだ特性はガタガタだと思います。 ネットワークの最適化が必要です。

まず、ツイーターを逆相にします。

ツイーターを右クリックして、Invertのところにチェックを入れると、逆相になります。

次に、ツイーターの音圧を調整します。

今回は作りやすい抵抗一本の調整回路です。

今回は、3.9Ωとしてみました。

私の感覚だと、この抵抗値(=ツイーターの音圧レベル)は、後述の自動最適化より個人 の感覚でやった方が良いような気がします。 この VituixCDA の素晴らしいところは、<u>ネットワークの最適化が「自動で」できる</u>ことで す。

→ だかしかし、今回は諦めましたw P.32 へ飛ぶ。

まず、WO(FE103NV)の回路の最適化を行います。

最適化を行う回路を指定するために、WO につながれた回路を Control を押しながら、ク リックして選択します。

その後、<u>Control を押したまま「q」を押す(Control+q)と、緑色のマーキング</u>がされま す。

もし間違って押してしまったら Control+e で解除できます。

次に、ツイーターをミュートするために、ツイーターを選択して「Control+m」を押します。

この状態になったら、最適化スタートです。「Control+p」を押して、最適化画面を立ち上 げます。

こんな感じの最適化画面が立ち上がります。

-	💎 Optimizer		_		×
bd	8	🕼 SPL 🛛 87	7.0 dB / 1	drivers	
	High pass None	~	Linkwi	.ow pass tz-Rilev	~
	N 2 🗸 🗆	Linpha 🔲 🛛	Invert N 2	L	in pha
	f 2000 Hz		f 2	000 Hz	

今回はウーハーの回路なので、「High pass: None」「Low pass: Linkwitz-Riley」を選びます。

次に、「SPL」「N」「f」を適当な形にします。

「SPL」:目標の音圧。200~400Hz付近の出力音圧の値が目安。

「N」:目標特性の次数(傾き)。2か4が一般的。

「f」:いわゆるクロス周波数。

ここをどの値にするかは、センスが問われるところですね。

いろいろやってみましたが、この自動化、使いこなしが難しいです(爆)

特に、現代のネットワークで組まれることを前提に作られたユニットでないと、理想のネ ットワークにはなかなか近づかないばかりか、特性上も不自然な結果になってしまいまし た。(たぶん、使いこなし次第ですが...)

今回のような場合は、既存のネットワークを基本として、自身のインスピーレーションに 任せてネットワーク回路を作っていったほうが良い結果が得られそうです。

-終-